
Theor. Comput. Fluid Dyn.
https://doi.org/10.1007/s00162-019-00512-z

ORIGINAL ARTICLE

Suraj Pawar · Omer San · Adil Rasheed · Prakash Vedula

A priori analysis on deep learning of subgrid-scale
parameterizations for Kraichnan turbulence

Received: 23 September 2019 / Accepted: 24 December 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract In the present study, we investigate different data-driven parameterizations for large eddy simulation
of two-dimensional turbulence in the a priori settings. These models utilize resolved flow field variables on
the coarser grid to estimate the subgrid-scale stresses. We use data-driven closure models based on localized
learning that employs a multilayer feedforward artificial neural network with point-to-point mapping and
neighboring stencil datamapping, and convolutional neural network fed by data snapshots of thewhole domain.
The performance of these data-driven closure models is measured through a probability density function and
is compared with the dynamic Smagorinsky model (DSM). The quantitative performance is evaluated using
the cross-correlation coefficient between the true and predicted stresses. We analyze different frameworks in
terms of the amount of training data, selection of input and output features, their characteristics in modeling
with accuracy, and training and deployment computational time. We also demonstrate computational gain that
can be achieved using the intelligent eddy viscosity model that learns eddy viscosity computed by the DSM
instead of subgrid-scale stresses. We detail the hyperparameters optimization of these models using the grid
search algorithm.

Keywords Turbulence closure · Deep learning · Neural networks · Subgrid-scale modeling · Large eddy
simulation

Communicated by Kunihiko Taira.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

S. Pawar · O. San (B)
School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078, USA
E-mail: osan@okstate.edu

A. Rasheed
Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7465 Trondheim, Norway

P. Vedula
School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA

http://orcid.org/0000-0002-2241-4648
http://crossmark.crossref.org/dialog/?doi=10.1007/s00162-019-00512-z&domain=pdf

S. Pawar et al.

1 Introduction

Direct numerical simulation (DNS) of complex fluid flows encountered in many engineering and geophysical
applications is computationally unmanageable because of the need to resolve a wide range of spatiotemporal
scales. Large eddy simulation (LES) and Reynolds averaged Navier–Stokes (RANS) modeling are two most
commonly used mathematical modeling frameworks that give accurate predictions by considering the inter-
action between the unresolved and grid-resolved scales. The development of these models is termed as the
turbulence closure problem and has been a long-standing challenge in the fluid mechanics community [1–4].

In LES, we filter the Navier–Stokes equations using a low-pass filtering operator that separates the motion
into small and large scales, and in turn, produces modified equations, which are computationally faster to
solve than actual Navier–Stokes equations [5–7]. The interaction between grid-resolved and unresolved scales
is then taken into account by introducing subgrid-scale stress (SGS) term in the modified equation. The
main task of the SGS model is to provide mean dissipation that corresponds to the transfer of energy from
resolved scales to unresolved scales (the production of energy at large scales is balanced by the dissipation
of energy at small scales based on Kolmogorov’s theory of turbulence). The dissipation effect of unresolved
scales can be included utilizing an eddy viscosity parameterization obtained through grid-resolved quantities.
Providing such dissipation mechanism often results in increasing the numerical stability of the underresolved
discretization. These eddy viscosity approaches are called as functional models, which assume isotropy of
small scales to present the average dissipation of the unresolved scales [8]. The most widely used functional
model is the Smagorinsky model [9] that uses a global constant called the Smagorinsky coefficient to produce
mean dissipation of energy. It is observed in many studies that a single value of the Smagorinsky coefficient
cannot be used for a variety of flow phenomenon [10–13]. The deficiencies of static Smagorinsky model
can be overcome by using dynamic Smagorinsky model (DSM) proposed by Germano et al. [14]. Lilly [15]
introduced the modification in Germano’s DSM by which the stress–strain relationship is optimized with a
least-squares approach (we discuss Lilly’s version of DSM in detail in Sect. 2.1). Several other versions of
Germano’s DSM have been proposed, such as localized version to overcome mathematical inconsistencies in
standard DSM [16], Lagrangian version of DSM [17], and DSM with a corrector step [18]. Even the dynamic
procedure is not free from parameter tuning, and one has to specify the test filter and grid filter width ratio to
accurately model the SGS stresses. Hence, there is a constant effort to develop a subgrid-scale model that is
free from heuristics and can predict the SGS stresses accurately.

In the past decade, the unprecedented amount of data is collected from experiments; high-fidelity simula-
tions have facilitated using machine learning (ML) algorithms in fluid mechanics [19,20]. ML algorithms are
now used for flow control, flow optimization, reduced-order modeling, flow reconstruction, super-resolution,
and flow cleansing [19,21]. One of the first applications of deep learning in fluid mechanics was byMilano and
Koumoutsakos [22] who implemented neural network methodology to reconstruct near-wall turbulence and
showed an improvement in prediction capability of velocity fields. Subsequently, several ML algorithms such
as shallow decoder for flow reconstruction [23], a convolutional neural network (CNN) for super-resolution
of turbulent flows [24], deep convolutional autoencoder for nonlinear model-order reduction [25,26] have
been proposed. Several studies have been conducted to model the dynamics of chaotic fluid flows using ML
algorithms [27–33]. Recently there is a growing interest in using the physical knowledge in combination with
the data-driven algorithms [30,34–40]. The physics can be incorporated into these learning algorithms by
adding a regularization term (based on governing equations) in loss function or modifying the neural network
architecture to enforce certain physical constraints.

In addition to reduced-order modeling and chaotic dynamical systems, the turbulence closure problem
has also benefited from the application of ML algorithms and has led to reducing uncertainties in RANS and
LES models [41–45]. Different machine learning algorithms like kernel regression, single hidden layer neural
network, random forest [46–48] have been proposed for turbulence closure modeling. Sarghini et al. [49]
proposed the hybrid approach in which the neural network is used for learning Bardina’s scale similar subgrid-
scalemodel for turbulent channel flow. Their neural network architecture employed 15 input features consisting
of velocity gradients and Reynolds tensor components (made up of fluctuating component of velocity) and
turbulent viscosity as the learned variable. The motivation behind this approach was to improve computational
performance rather than to learn the true turbulent dynamics. Ling et al. [37] presented a novel neural network
architecture that utilizes a multiplicative layer with an invariant tensor to embed Galilean invariance for
the prediction of Reynolds stress anisotropy tensor. Their tensor basis neural network (TBNN) uses five
invariants of strain rate tensor and rotation rate tensor at a point in the input layer. In addition to the input
layer, the TBNN has tensor input layers that take a tensor basis [50] (tensor basis includes 10 isotropic

A priori analysis on deep learning of subgrid-scale parameterizations

basis tensors). They demonstrated the superiority of applying constrained neural network over generic neural
network architecture in predicting Reynolds stress anisotropy tensor for various complex flow problems such
as duct flow and wavy channel flow. Maulik et al. [39] introduced data-driven turbulence closure framework
for subgrid-scale modeling and performed a priori and a posteriori analysis for two-dimensional Kraichnan
turbulence. Their neural network architecture employs vorticity, stream function, and eddy viscosity kernel
information at nine surrounding grid points to learn the turbulence source term at the central point. They
found that the inclusion of eddy viscosity kernels leads to accurate prediction of the turbulence source term.
Gamahara and Hattori [51] tested an artificial neural network for finding a new subgrid-scale model in LES
of channel flow using the pointwise correlation between grid-resolved variables and subgrid stresses. They
investigated the effect of different input variables to the neural network and observed that including velocity
gradients and vertical distance gives the most accurate prediction for SGS stresses. Wang et al. [52] developed
a data-driven framework to learn discrepancies in Reynolds stress models as a function of mean flow features
using random forest regression algorithm. They evaluated the performance of the proposed framework in terms
of different training and testing parameters for flow characteristics and different geometries. Bhatnagar et al.
[53] built an approximation model using encoder–decoder CNN architecture to determine the aerodynamic
flow field around airfoils using the angle of attack, Reynolds number, and airfoil shape as the input variables.
Beck et al. [54] developed a data-driven approach based on recurrent convolutional neural network for learning
the LES closure term for decaying homogeneous isotropic turbulence problem and presented a methodology
to construct stable models that can be used in CFD codes. Their architecture includes snapshots of primitive
variables and the coarse-grid LES operator as input features and unknown subgrid terms in labels. Srinivasan et
al. [55] evaluated the capability of multilayer perceptron and long short-termmemory network in predicting the
turbulent statistics for shear flow. In the recent work, Pal [56] illustrated the two to eight times computational
gain that can be attained with a data-driven model that utilizes deep neural network to learn eddy viscosity
obtained from the dynamic Smagorinsky model.

Themotivation behind the presentwork is to address the following questions:Which data-driven algorithms
are suitable for particular applications, which input features have a significant influence on learning subgrid
stresses, which algorithm has better predictive capability, which algorithm is faster, and how much data to use
for different ML algorithms for efficient learning? In addition to addressing these questions, we also study the
effect of data locality where the information at neighboring points is found to give improved prediction than
point-to-point mapping. The work presented here is concurrent with many of the ideas presented in the above
studies [24,37,39,54,56,57], and our main objective is to investigate the performance of different approaches
for subgrid-scale modeling in LES of turbulence.

To achieve these objectives,we examine the performanceof data-driven closuremodels for two-dimensional
Kraichnan turbulence [58]. Even though the two-dimensional turbulence cannot be realized in practice or
experiments but only in numerical simulations, it represents many geophysical flows and provides a starting
point in modeling these flows. It finds application in modeling many atmospheric and ocean flows [59–61].
A reduction in dimensionality compared to three-dimensional turbulence leads to inverse energy cascade, i.e.,
the transfer of energy from small scales to large scales and direct enstrophy (spatial average of the square of the
vorticity) cascade from large scales to small scales [60,62,63]. Therefore, with the presence of complex flow
interactions and simplicity of two-dimensional analysis, Kraichnan turbulence will serve as a good testbed for
our data-driven closure model analysis. Our approaches are based on three models that employ velocity field,
velocity gradients, and the Laplacian of the velocity. These variables are available in any CFD solver, and the
SGS stresses can be learned in several ways such as point-to-point mapping, neighboring stencil mapping, and
learning from the whole field or snapshot. In this work, we demonstrate these different approaches and analyze
them in the context of the predictive performance, amount of training data, and computational overhead for
training and testing, as well as their data structures.

In Sect. 2, we introduce the turbulence closure problem and the dynamic Smagorinsky model. Section 3
presents different frameworks investigated in this study. In Sect. 4, we detail the data generation using DNS
and will evaluate data-driven turbulence closure models in terms of predictive performance, computational
overhead, and data requirement for training.We demonstrate an additional modeling approach using intelligent
eddy viscosity model in Sect. 5 that is computationally faster than the DSM. Finally, we will present the
conclusions and future work in Sect. 6.We also describe the hyperparameters selection procedure in “Appendix
B” to obtain optimal neural network architecture.

S. Pawar et al.

2 Turbulence closure

We begin with the introduction of the turbulence closure framework by outlining governing equations in its
primitive variables form used to model incompressible fluid flows. The spatial and temporal evolution of the
fluid flow is governed by the Navier–Stokes equations that describe the conservation of mass and momentum:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+ ∂uiu j

∂x j
= − 1

ρ

∂p

∂xi
+ ν

∂

∂x j

(
∂ui
∂x j

+ ∂u j

∂xi

)
, (2)

where ui is the ith component of velocity, p is the pressure, ρ is the density, and ν is the kinematic viscosity
of fluid. The governing equations for LES (also called as the filtered Navier–Stokes equations) are obtained
by applying a low-pass filter operation, and it results in a grid filtered system of equations:

∂ ūi
∂xi

= 0, (3)

∂ ūi
∂t

+ ∂uiu j

∂x j
= − 1

ρ

∂ p̄

∂xi
+ ν

∂

∂x j

(
∂ ūi
∂x j

+ ∂ ū j

∂xi

)
, (4)

where the overbar quantities represent the filtered variables. The filtered Navier–Stokes equations have the
nonlinear term uiu j which is unknown due to truncation of small eddies by spatial filtering operation. The
decomposition of nonlinear term [64] can be given as

uiu j = τi j + ūi ū j , (5)

where τi j = uiu j − ūi ū j is the subgrid-scale stress that consists of cross-stress tensor (which represents inter-
action between large and small scales), Reynolds subgrid tensor (which represents interaction between subgrid
scales), and Leonard tensor (which represents the interactions among large scales). Using this decomposition,
the filtered Navier–Stokes equations can be written as

∂ ūi
∂t

+ ∂ ūi ū j

∂x j
= − 1

ρ

∂ p̄

∂xi
+ ν

∂

∂x j

(
∂ ūi
∂x j

+ ∂ ū j

∂xi

)
− ∂τi j

∂x j
. (6)

The main challenge in subgrid-scale modeling is to approximate this τi j term, and the approximated model
should provide sufficient dissipation corresponding to the transfer of energy from large eddies to unresolved
eddies. The static Smagorinsky model [9] which uses an effective eddy viscosity to model SGS stresses is
given by

τ
M,d
i j = −2(CsΔ)2|S̄|S̄i j , (7)

where the superscript M stands for the model, d means the deviatoric (traceless) part of the tensor, Δ is the
grid filter width, and Cs is the static Smagorinsky coefficient. A derivation of Smagorinsky model for two-
dimensional case is provided in “Appendix A.” The terms |S̄| and S̄i j in the above equation are calculated
as

S̄i j = ∂ ūi
∂x j

+ ∂ ū j

∂xi
, |S̄| =

√
2S̄i j S̄i j . (8)

It should be noted that the static Smagorinsky model might be excessive or under dissipative with suboptimal
values of Cs. It was found in many studies that the Smagorinsky coefficient is different for different flows and
additional modifications are needed in the near-wall region [10–13]. To tackle these problems, the dynamic
Smagorinsky model [14,15] was introduced that allowed the Cs to be computed dynamically based on the
flow, time, resolution, and spatial location. The dynamic Smagorinsky model is discussed in detail in Sect. 2.1.

A priori analysis on deep learning of subgrid-scale parameterizations

2.1 Dynamic Smagorinsky model

Germano et al. [14] introduced the dynamic procedure that calculates the Smagorinsky coefficient based on
the local flow structure dynamically instead of assuming a constant value. The dynamic procedure consists of
applying a secondary spatial filter called as the test filter to the grid filtered Navier–Stokes equations. The test
filtered equations can be written as

∂ ˆ̄ui
∂t

+ ∂ ˆ̄ui ˆ̄u j

∂x j
= − 1

ρ

∂ ˆ̄p
∂xi

+ ν
∂

∂x j

(
∂ ˆ̄ui
∂x j

+ ∂ ˆ̄u j

∂xi

)
− ∂Ti j

∂x j
, (9)

where the caret over the overbar represents the test filtered variables. The test filtered subgrid stress Ti j (also
called as subtest-scale stress) is given by

Ti j = ̂uiu j − ˆ̄ui ˆ̄u j . (10)

Similar to Eq. 7, the subtest-scale stress can be approximated as

T M,d
i j = −2(CsΔ̂)2| ˆ̄S| ˆ̄Si j , (11)

where Δ̂ is the test filter scale. The application of the dynamic procedure leads to introduction of grid filtered
SGS stresses given by

Li j = Ti j − τ̂i j , (12)

= ̂ūi ū j − ˆ̄ui ˆ̄u j . (13)

In the dynamic procedure, the value of Cs is chosen in such a way that the error (also called as Germano
identity error) given in the following equation is minimized

εi j = T M,d
i j − τ̂

M,d
i j − Ld

i j , (14)

= −2(CsΔ̂)2| ˆ̄S| ˆ̄Si j + 2[(CsΔ)2|S̄|S̄i j
∧

] − Ld
i j . (15)

The computation of Cs in the above equation that minimizes the Germano identity error is not straightforward
as Eq. 14 is a tensor equation (three equations in case of two-dimensional flows) for only one unknown Cs.
Also, the coefficient Cs in the second term of Eq. 15 is inside the test filter operator. However, it is often
approximated as

εi j = −2(CsΔ̂)2| ˆ̄S| ˆ̄Si j + 2(CsΔ)2|S̄|S̄i j
∧

− Ld
i j , (16)

which makes the formulation mathematically consistent only when Cs is a constant-valued variable.

(CsΔ)2 = Mi jLd
i j

Mi jMi j
, (17)

where

Mi j = 2|S̄|S̄i j
∧

− 2

(
Δ̂

Δ

)
| ˆ̄S| ˆ̄Si j . (18)

From the original dynamic Smagorinsky model [14], it was found that the denominator in Eq. 17 can become
very small leading to excessively large value of Cs. Furthermore, Eq. 17 becomes mathematically ill-posed
sincewe factorCs from the convolution filter (i.e., see Eq. 16). Therefore, some types of averaging are necessary
in practice as given below

(CsΔ)2 =
〈
Mi jLd

i j

〉+
h〈

Mi jMi j
〉
h

, (19)

S. Pawar et al.

where 〈·〉h denotes the spatial averaging, and 〈·〉+h = 0.5(〈·〉 + |〈·〉|) denotes the positive clipping. The above
averaging gives a global value ofCs, which changes over time. Even though the spatial adaptivity of the dynamic
model is lost due to this averaging procedure, the eddy viscosity field given byEq. 50 provides spatial variability.
One of the advantages of the dynamic Smagorinsky model is that the numerator can also take negative values
corresponding to backscatter, i.e., transfer of energy from small scales to large scales. If the averaging is not
done, the dynamic model leads to a highly variable eddy viscosity field and can cause numerical simulations
to become unstable [3,65]. These findings are also applicable to data-driven turbulence closure modeling as
demonstrated in recent studies [39,54]. From computational point of view, the dynamic Smagorinsky model
often stabilizes numerical schemes by providing absolute dissipation to numerical oscillations associated with
truncation or aliasing errors at the small scales [66,67].

3 Data-driven turbulence closure

In this section, we outline different data-driven turbulence closure frameworks investigated in this work. As
discussed in Sect. 2, we try to approximate τi j using resolved flow variables on coarse grid in subgrid-scale
modeling. We can consider this as a regression problem that can be studied using various classes of supervised
machine learning algorithms. In the case of supervised algorithms, we try to learn the optimal map between
inputs and outputs. We focus on two algorithms: an artificial neural network (ANN) also called as multilayer
perceptron and convolutional neural network (CNN) to build data-driven closure models.

An artificial neural network consists of several layers made up of the predefined number of nodes (also
called as neurons). A node combines the input from the data with a set of coefficients called weights. These
weights either amplify or dampen the input and thereby assign the significance to the input in relation to the
output that the ANN is trying to learn. In addition to the weights, these nodes have a bias for each input to the
node. The input-weight product and the bias are summed, and this sum is passed through a node’s activation
function. The activation function introduces nonlinearity, and this allows the neural network to map complex
relations between inputs and outputs. The above process can be described using the matrix operation as given
by [68]

Sl = Wl Xl−1, (20)

where Xl−1 is the output of the (l − 1)th layer, and Wl is the matrix of weights for the lth layer. The output
of the lth layer is given by

Xl = ζ(Sl + Bl), (21)

where Bl is the vector of biasing parameters for the lth layer and ζ is the activation function. If there are L
layers between the input and the output, then the mapping of the input to the output can be derived as follows

Ỹ = ζL(WL , BL , . . . , ζ2(W2, B2, ζ1(W1, B1, X))), (22)

where X and Ỹ are the input and output of the ANN, respectively.
The matrices W and B are optimized through backpropagation and some optimization algorithms. The

backpropagation algorithm provides a way to compute the gradient of the objective function efficiently, and
the optimization algorithm gives a rapid way to learn optimal weights. For the regression problem, usually,
the objective is to learn the weights associated with each node in such a way that the root-mean-square error
between the true labels Y and output of the neural network Ỹ is minimized. The backpropagation algorithm
proceeds as follows: (i) the input and output of the neural network are specified along with some initial
weights, (ii) the training data are run through the network to produce output Ỹ whose true label is Y , (iii) the
derivative of the objective function with each of the training weights is computed using the chain rule, (iv) the
weights are updated based on the learning rate, and then we go to step (ii). We continue to iterate through this
procedure until convergence or the maximum number of iterations is reached. There are a number of ways in
which the weights can be initialized [69], the optimization algorithm is selected [70–72], and the loss function
is regularized [73,74] either to speed up the learning process or to prevent overfitting. Furthermore, highly
nonlinear relationship between the input and output (as in the case of turbulence) necessitates the need of deep
neural network architecture, which are prone to overfitting. Pruning neural network weights can significantly
reduce the parameter count leading to better generalization [75].

A priori analysis on deep learning of subgrid-scale parameterizations

Input layer

Hidden layers

Output
layer

...

...
...

ū

v̄xx

v̄yy

... τ̃11

τ̃12

τ̃22

i, j

Point-to-point
mapping

i, j

Neighboring
stencil mapping

i, j

Fig. 1 Feedforward neural network for point-to-point and neighboring stencil mapping of resolved flow variables to SGS stresses

It has been demonstrated in many studies how an ANN can be used for learning input–output relationship
in the context of turbulence closure modeling [37,39,52,54,55,57,76–78]. We use two types of mapping
using ANN as shown in Fig. 1. The first one is the point-to-point mapping in which only the information
at a point is used to learn the SGS stresses at that point. We can include different features at that point and
evaluate its predictive capability by means of probability density function-based analysis. We use three classes
of point-to-point mapping in our data-driven closure models as given below

M1 : {ū, v̄} ∈ R

2 → {τ̃11, τ̃12, τ̃22} ∈ R

3, (23)

M2 : {ū, v̄, ūx , ū y, v̄x , v̄y} ∈ R

6 → {τ̃11, τ̃12, τ̃22} ∈ R

3, (24)

M3 : {ū, v̄, ūx , ū y, v̄x , v̄y, ūxx , ū yy, v̄xx , v̄yy} ∈ R

10 → {τ̃11, τ̃12, τ̃22} ∈ R

3, (25)

where ū, v̄ are the velocities in x and y directions, the subscripts x and y denote the first derivative, the
subscripts xx and yy are the second derivative, and τ̃11, τ̃12, τ̃22 are the approximated SGS stresses.

The second approach is to use the information at neighboring points to learn SGS stresses at a point. We
can either use information of just north, south, east, and west points or information at all nine neighboring
points. In our neighboring stencil mapping, we use information at nine grid points. As we will see in Sect. 4,
one of the advantages of this approach is that the ANN can learn the input–output mapping with less number
of input features. Similar to point-to-point mapping, we use three classes of input features for neighboring
stencil mapping. Therefore, in case of neighboring stencil mapping, we will have nine times the number of
input features as in case of point-to-point mapping.

In addition to ANN, we also investigate CNN for subgrid-scale modeling. CNNs have been found to
perform better than ANNs when the data are in the form of snapshots such as images and are widely used for
computer vision tasks such as object detection [79,80] and improving the quality of images [81,82]. CNNs
have also been successfully applied for detecting flow disturbances [83], super-resolution analysis of turbulent
flow field [24], and turbulence closure modeling [42,54,84,85]. One of the differences between ANN and
CNN is that the training sample to the CNN is not given as one-dimensional vector but as a two-dimensional
snapshot image. This will preserve the original multi-dimensional structure and will aid in learning the SGS
stresses. Apart from that, the number of parameters to be learned in CNN is significantly less than ANN due
to parameter sharing scheme.

The Conv layers are the fundamental building blocks of the CNN. Similar to weights in case of ANN, Conv
layers have filters, also called as kernels that has to be learned using the backpropagation algorithm. The filter
has a smaller shape, but it extends in through the full depth of the input volume of previous layer. For example,
if the input to the CNN has 64× 64× 3 dimension where 3 is the number of input features, the kernels of first
Conv layer can have 3× 3× 3 shape. During the forward propagation, we convolve the filter across the width
and height of the input volume to produce the two-dimensional map. The two-dimensional map is constructed
by computing the dot product between the entries of the filter and the input volume at any position and then
sliding it over the whole volume. Mathematically the convolution operation corresponding to one filter can be
given as

S. Pawar et al.

ū
. . .

v̄yy

τ̃11
τ̃12
τ̃22

Input Conv Conv Conv Conv Conv Conv Output

CNN

Fig. 2 Convolution neural network for mapping of resolved variables to SGS stresses. Our CNN architecture is fairly simple, and
we use zero padding to keep the same shape as we go from input to the output

Sli j =
Δi/2∑

p=−Δi /2

Δ j/2∑
q=−Δ j /2

Δk/2∑
r=−Δk/2

Wl
pqr X

l−1
i+p j+q k+r + Bpqr , (26)

where Δi , Δ j , Δk are the sizes of filter in each direction,Wl
pqr are the entries of the filter for lth Conv layer,

Bpqr is the biasing parameter, and Xl−1
i jk is the input from (l − 1)th layer. Each Conv layer will have a set of

predefined filters, and the two-dimensional map produced by each filter is then stacked in the depth dimension
to produce a three-dimensional output volume. This output volume is passed through an activation function to
produce a nonlinear map between inputs and outputs. The output of the lth layer is given by

Xl
i jk = ζ(Sli jk), (27)

where ζ is the activation function. It should be noted that as we convolve the filter across the input volume, the
size of the input volume shrinks in height and width dimension. Therefore, it is common practice to pad the
input volume with zeros called as zero padding. The zero padding allows us to control the shape of the output
volume and is used in our data-driven closure framework to preserve the shape so that input and output width
and height are the same. The size of the zero padding is an additional hyperparameter in CNN.

Figure 2 shows the schematic of the CNN architecture used in our data-driven closure framework. The
input to the CNN is obtained by stacking snapshots of resolved variables and their derivatives at the coarse
grid. Similar to the ANN, we use three classes of input features as given in Eqs. 23–25. Therefore, for model
M1, each sample of the input volume will have 64× 64× 2 shape and the sample of output volume will have
64 × 64 × 3 shape.

4 Intelligent SGS modeling

The present study is focused on the comparison of data-driven closure approaches discussed in Sect. 3 for
SGS modeling. We use two-dimensional Kraichnan turbulence problem as our prototype example to show the
comparison of different frameworks. The purpose of this test problem is to see how the abundant population
of randomly generated vortices evolve over time [86]. For data-driven frameworks, we use true subgrid-scale
stresses (τi j) generated by solving the two-dimensional Navier–Stokes equation with DNS. The computational
domain is square in shapewith the dimension [0, 2π]×[0, 2π] in x and y directions.Thedomainhas the periodic
boundary condition in x and y directions. We use pseudo-spectral solver for DNS of Kraichnan turbulence
problem. The pseudo-spectral solver is accurate in a sense that it does not introduce any discretization error.
We use hybrid explicit third-order Runge–Kutta scheme and implicit Crank–Nicolson scheme for the time
integration. It should be noted that we solve the Navier–Stokes equations using stream function-vorticity
formulation and then compute primitive variables using a spectral method for differentiation. The stream
function-vorticity formulation eliminates the pressure term from the momentum equation, and hence, there is
no odd–even coupling between the pressure and velocity. This allows us to use collocated grid instead of the
staggered grid.

The DNS solution is computed for Re = 4000 with the grid resolution of 1024 × 1024. We integrate the
solution from time t = 0 to t = 4 with
t = 1 × 10−3. The evolution of the vorticity field and the energy

A priori analysis on deep learning of subgrid-scale parameterizations

0 2 4 6
x

0

1

2

3

4

5

6

y

t = 0.0

0 2 4 6
x

0

1

2

3

4

5

6

y

t = 2.0

0 2 4 6
x

0

1

2

3

4

5

6

y

t = 4.0

100 101 102 103

k

10−16

10−13

10−10

10−7

10−4

10−1

E
(k
)

k−3

t = 0.0
t = 2.0
t = 4.0

−60

−45

−30

−15

0

15

30

45

60

75

−40

−20

0

20

40

60

−32

−16

0

16

32

48

Fig. 3 Time evolution of the vorticity field and energy spectrum from time t = 0.0 to t = 4.0 for Re = 4000 at grid resolution
1024 × 1024

spectrum for two-dimensional Kraichnan turbulence are shown in Fig. 3. The initial condition for the energy
spectrum is assigned in such a way that the maximum value of the energy is designed to occur at the wave
number k = 10. Using this energy spectrum and random phase function, the initial vorticity field is assigned.
The random vorticity field assigned is kept identical (using constant seed) in all our numerical experiments
for comparison, reproducing the results. Interested readers are referred to related work [87,88] for the energy
spectrum equation and randomization process. We collect 400 snapshots of data from time t = 0 to t = 4.
The Kraichnan–Batchelor–Leith (KBL) theory states that the energy spectrum of two-dimensional turbulence
is proportional to k−3 in the inertial range and we observe this behavior with our numerical solution at t = 2.0
and t = 4.0 as shown in Fig. 3. For LES, we coarsen the solution on 64 × 64 grid resolution using the
spectral cutoff filter. The resolved flow variables at the coarse grid are then used to compute input features for
data-driven turbulence closure models.

We analyze the performance of data-driven closure models against the dynamic Smagorinsky model dis-
cussed in Sect. 2.1. One of the advantages of DSM is that the Smagorinsky coefficient is computed using the
resolved field variables in a dynamic fashion and does not require a priori coefficient specification. Due to
this advantage, DSM is widely used in LES of engineering and geophysical applications [89–92]. The only
parameter that has to be specified for the DSM is the filter width ratio (i.e., a ratio between the test and grid
filters). We use the spectral cutoff filter as a test filter, and the test filter scale is Δ̂ = 2Δ. Figure 4 shows the
temporal evolution of the Smagorinsky coefficient from time t = 0.0 to t = 4.0 computed with the DSM. The
Smagorinsky coefficient changes between 0.16 and 0.18. We have to use this low-pass filtering operation eight
times for the DSM, and the procedure becomes computationally expensive compared to the static Smagorin-
sky model. A data-driven turbulence closure model can also be developed to learn dynamic eddy viscosity
(computed by DSM) instead of learning true SGS stresses. The similar approach was implemented by Sarghini
et al. [49] for learning Bardina’s scale similar subgrid-scale model to improve computational performance.
We use the similar framework for learning eddy viscosity computed by the DSM, and it is detailed in Sect. 5.

S. Pawar et al.

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.16

0.17

0.18

C
s

Cs

Fig. 4 Evolution of the Smagorinsky coefficient (Cs) for two-dimensional Kraichnan turbulence problem computed using Lily’s
version of dynamic model with positive clipping

The DNS code for the pseudo-spectral solver and the code for DSM are implemented using vectorization in
Python. This will allow us to compare the computational performance of the DSM with data-driven closure
models fairly (the most popular libraries for machine learning like Keras, TensorFlow are available in Python).

We use two metrics to determine the performance of data-driven closure models. First one is the cross-
correlation between true SGS stresses and the predicted SGS stresses. The cross-correlation (cc) is calculated
using the following formula

cc = cov(Y, Ỹ)

σYσỸ
, (28)

where the covariance (cov) is defined as

cov(Y, Ỹ) = E[(Y − E[Y])(Ỹ − E[Ỹ])]. (29)

In the above equations, Y is the true field, Ỹ is the predicted field, σY is the standard deviation of Y , σỸ is the
standard deviation of Ỹ , E[Y] is the expected value of the true field, and E[Ỹ] is the expected value of the
predicted field. The expected value and the standard deviation for a sample field Y can be given as

E[Y] =
∑n

i=1 yi
n

, σY =
√∑n

i=1(yi − E[Y])2
n

. (30)

In addition to the cross-correlation, we assess the model’s performance using probability density function
(PDF)-based analysis. We test all data-driven closure models using 350 snapshots of training data from time
t = 0.0 to t = 3.5. We use 20% of the training data for validation. We use the resolved field variables at
time t = 4.0 to determine SGS stresses as out-of-training data snapshot. These data have not been seen by the
neural network during training, and hence, the model’s performance should be measured against these data. In
addition to using 350 data snapshots for training, we test extremely subsampled data with 70 and 24 snapshots.
This will help us in understanding how much data to use for each of these data-driven closure models for
learning true SGS stresses efficiently. We normalize all input features and output labels in the range [−1, 1]
using the minimum and maximum values for each features. The normalization of data helps in giving all input
features equal importance and also allows optimization algorithm to converge faster. The hyperparameters for
all neural network architectures are selected using gridsearch algorithm coupled with fivefold cross-validation,
and the procedure is discussed in detail in “Appendix B.” We have to be cautious when measuring the CPU
time for deployment of trained model, and the sample code for CPU time measurement is given in “Appendix
C.” The sample code for our ANN and CNN architecture is provided in “Appendix D.”

4.1 Point-to-point mapping

We first discuss the performance of point-to-point mapping ANN in predicting true SGS stresses. Table 1 gives
the cross-correlation between true and predicted SGS stresses for three different models (i.e., models M1,
M2, M3 presented in Sect. 3). The cross-correlation between the DSM and true stresses is low because the
DSM model cannot capture the phase correctly (as we will see at the end of this section). It can be seen that
the correlation between true and predicted SGS stresses is very poor when we use only coarse-grid-resolved

A priori analysis on deep learning of subgrid-scale parameterizations

Table 1 Cross-correlation between true and predicted SGS stresses and CPU time for different models with point-to-point
mapping for ANN

Model Ns cc(τ11) cc(τ12) cc(τ22) Train time Test time

DSM – 0.011 − 0.008 0.011 – 0.0095
M1 350 0.043 − 0.001 0.044 1577.11 0.0138
M2 350 0.343 0.261 0.343 1608.95 0.0132
M3 350 0.556 0.487 0.556 1642.82 0.0127
M3 70 0.555 0.481 0.555 322.08 0.0125
M3 24 0.549 0.465 0.550 112.04 0.0128

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Fig. 5 Probability density function for SGS stress distribution with point-to-point mapping. The ANN is trained using
M1: {ū, v̄} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0 to t = 3.5, and the model
is tested for 400th snapshot at t = 4.0

velocities at a point to determine the stresses at that point. It is clear from Fig. 5 that the point-to-point mapping
approach is unable to map coarse-grid-resolved velocities to SGS stresses and it calculates completely wrong
stresses. To investigate furtherwhether the use of other activation function helps to improve the prediction or not,
we test Tanh and Sigmoid functionwith the same neural network architecture.Wefind that the predicted stresses
are similar even with other activation functions. This confirms that additional input features are needed to learn
more accurate mapping between inputs and outputs. The PDF for true and predicted stresses with different
activation functions is provided in “Appendix B” for point-to-point mapping with modelM1. For the DSM, the
PDF shape is similar to the true PDF despite having low cross-correlation. The DSM captures the bulk eddy
viscosity, but the phase is completely distorted with the DSM. From Figs. 6 and 7, we observe an improvement
in the prediction of SGS stresses as we start including more features like coarse-grid velocity gradients (i.e.,
model M2) and the Laplacian on coarse-grid velocities (i.e., model M3). We test the point-to-point ANN for
subsampled data using 70 and 24 data snapshots. The cross-correlation between true and predicted stress is
almost similar to the one with 350 data snapshots. Figure 8 displays the PDF of true stresses and the predicted
stresses computed using point-to-point ANN with a different number of snapshots. It can be observed that
the PDF predicted with different number of snapshots is almost the same for ANN point-to-point mapping.
Therefore, we can conclude that the ANN can be trained with less number of samples without a significant
drop in accuracy. However, neural networks are prone to overfit when we use fewer data and the ability of
neural networks to approximate on unseen data reduces. There are different methods to prevent overfitting
such as data augmentation, regularization, weight decay, and dropout that should be used when less data are
available for learning SGS stresses.

In terms of the computational performance, point-to-point mapping requires less training time for learning
SGS stresses from resolved flow variables. This approach is particularly attractive for complex or unstructured
mesh and has been applied in many studies [37,38,51,52,76]. As illustrated in these works, our analysis with
simple input features like resolved velocities and their derivatives also shows that the input features are critical
for effective learning of SGS stresses for point-to-point mapping approach. From Table 1, we can see that the
train time does not increase linearly with an increase in the number of input features. The train time for the
neural network mainly depends upon its architecture (how deep and wide it is) and the number of training
samples. Since we are using the same architecture for all models, we observe that the train time is similar for
all cases. In terms of the test time or deployment time, the point-to-point ANN is slightly slower than the DSM
(around 1.3 times).

S. Pawar et al.

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102
P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Fig. 6 Probability density function for SGS stress distribution with point-to-point mapping. The ANN is trained using
M2: {ū, v̄, ūx , ūx , ū y, v̄y} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0 to t = 3.5,
and the model is tested for 400th snapshot at t = 4.0

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Fig. 7 Probability density function for SGS stress distribution with point-to-point mapping. The ANN is trained using
M3: {ū, v̄, ūx , ūx , ū y, v̄y, ūxx , ū yy, v̄xx , v̄yy} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0
to t = 3.5, and the model is tested for 400th snapshot at t = 4.0

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

True ANN (350) ANN (70) ANN (24)

Fig. 8 Probability density function for SGS stress distribution with point-to-point mapping. The ANN is trained using
M3: {ū, v̄, ūx , ūx , ū y, v̄y, ūxx , ū yy, v̄xx , v̄yy} → {τ̃11, τ̃12, τ̃22}. The model is trained using different number of snapshots
between t = 0.0 and t = 3.5, and the model is tested for 400th snapshot at t = 4.0

4.2 Neighboring stencil mapping

In this section, we discuss the numerical assessment of results for ANN with neighboring stencil mapping.
Table 2 reports the cross-correlation between true and predicted SGS stresses for neighboring stencil mapping
ANN. Figure 9 shows that this framework can predict SGS stresses with sufficient accuracy close to the
dynamic Smagorinsky model with just coarse-grid velocities (i.e., model M1). If we compare Tables 1 and 2,
we see that the neighboring stencil mapping with model M1 provides slightly better correlation than utilizing
coarse-grid velocities and their derivatives at a single point. This clearly shows the benefit of incorporating
neighboring information to determine SGS stresses. As we begin adding more features (i.e., first and second
derivative of coarse-grid-resolved velocities), we start getting correlation up to 0.8 between true and predicted

A priori analysis on deep learning of subgrid-scale parameterizations

Table 2 Cross-correlation between true and predicted SGS stresses and CPU time for different models with neighboring stencil
mapping for ANN

Model Ns cc(τ11) cc(τ12) cc(τ22) Train time Test time

DSM – 0.011 − 0.008 0.011 – 0.0095
M1 350 0.599 0.548 0.599 1675.92 0.0136
M2 350 0.783 0.731 0.783 1845.62 0.0141
M3 350 0.813 0.744 0.813 2065.11 0.0146
M3 70 0.789 0.746 0.789 425.84 0.0152
M3 24 0.786 0.721 0.786 139.49 0.0149

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Fig. 9 Probability density function for SGS stress distribution with neighboring stencil mapping. The ANN is trained using
M1 : {ū, v̄} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0 to t = 3.5, and the model is
tested for 400th snapshot at t = 4.0

SGS stresses. From Figs. 10 and 11, we notice that the SGS stresses predicted by the ANN are very close to
true stresses when the first derivative and Laplacian of coarse-grid velocities are also included in the training.

We examine this framework with the different number of data snapshots to check the optimal data needed
for ANN to learn SGS stresses with sufficient accuracy. Figure 12 shows the PDF of true and predicted stresses
calculated with neighboring stencil mapping for different number of snapshots. From Table 2 we observe that
there is a slight drop in cross-correlation as we decrease the amount of data utilized for training. The CPU time
required for training drops significantly for less number of training data snapshots. Overall, we can conclude
that the accuracy of the prediction will improve with the amount of the training data at the cost of higher
computational overhead for training. One more advantage of this approach is that the neighboring stencil
mapping can be employed for the complicated and unstructured mesh. This is one of the desirable features
of any data-driven frameworks, as the turbulence closure model is deployed for complex fluid flow analysis,
which is run on supercomputers. In the neighboring stencil mapping framework, the information at only a
few neighboring nodes is required and it can be implemented without much of the communication overhead.
For the deployment computational time, we get similar findings as to the point-to-point mapping ANN. The
neighboring stencil mapping is around 1.5 times slower than DSM. However, to get the same order of accuracy
with DSM, we will need to use a fine mesh for LES and this can be computationally expensive than employing
neighboring stencil mapping ANN.

4.3 CNN mapping

In this section, we present the predictive performance of CNN mapping to learn SGS stresses. Table 3 lists
the cross-correlation between true and predicted SGS stresses computed using CNN mapping. CNN mapping
provides the best prediction among three frameworks, and even with just coarse-grid-resolved velocities as
input features, we obtain cross-correlation around 0.78 between true and predicted SGS stresses. Figure 13
shows the PDFof true and predicted stresses calculated using themodelM1withCNNmapping. CNNmapping
can predict the spatial distribution of stresses correctly, and we observe that the true and predicted PDF is very
close to each other. When we incorporate more input features in the form of first and second derivatives of
coarse-grid velocities (i.e., model M2, and M3), we see an improvement in cross-correlation to around 0.84.
Figures 14 and 15 display the PDF of true and predicted stresses for models M2 and M3, respectively. A very

S. Pawar et al.

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102
P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Fig. 10 Probability density function for SGS stress distribution with neighboring stencil mapping. The ANN is trained using
M2: {ū, v̄, ūx , ūx , ū y, v̄y} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0 to t = 3.5, and
the model is tested for 400th snapshot at t = 4.0

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN

Fig. 11 Probability density function for SGS stress distribution with neighboring stencil mapping. The ANN is trained using
M3: {ū, v̄, ūx , ūx , ū y, v̄y, ūxx , ū yy, v̄xx , v̄yy} ⇒ {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0
to t = 3.5, and the model is tested for 400th snapshot at t = 4.0

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

True ANN (350) ANN (70) ANN (24)

Fig. 12 Probability density function for SGS stress distribution with neighboring stencil mapping. The ANN is trained using
M3: {ū, v̄, ūx , ūx , ū y, v̄y, ūxx , ū yy, v̄xx , v̄yy} → {τ̃11, τ̃12, τ̃22}. The model is trained using different number of snapshots
between t = 0.0 and t = 3.5, and the model is tested for 400th snapshot at t = 4.0

good agreement between PDF of true and predicted SGS stresses is observed for CNN mapping with M2 and
M3.

We also evaluate the performance of CNN mapping with different amount of training snapshots for model
M3. Figure 16 shows the PDF of true and predicted stresses for the different number of snapshots. We can
see that there is a shift in predicted PDF compared to true PDF for τ11 and τ22 when we use less number of
training snapshots. Also the cross-correlation between true and predicted stresses has reduced when we utilize
less number of data snapshots for training, and the performance is poorer than neighboring stencil mapping
ANN with less number of snapshots. In terms of the computational performance, CNN mapping surpasses
both point-to-point and neighboring stencil mapping ANN. This is due to the weight sharing features of CNN,
and hence, the number of parameters to be learned is less than ANN. The deployment computational time

A priori analysis on deep learning of subgrid-scale parameterizations

Table 3 Cross-correlation between true and predicted SGS stresses and CPU time for different models with CNN mapping

Model Ns cc(τ11) cc(τ12) cc(τ22) Train time Test time

DSM – 0.011 − 0.008 0.011 – 0.0095
M1 350 0.783 0.728 0.784 374.47 0.0024
M2 350 0.828 0.779 0.827 391.33 0.0021
M3 350 0.835 0.779 0.835 408.65 0.0017
M3 70 0.736 0.674 0.739 77.25 0.0025
M3 24 0.627 0.589 0.621 27.67 0.0025

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM CNN

Fig. 13 Probability density function for SGS stresses distribution with CNN mapping. The CNN is trained using M1: {ū, v̄} →
{τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0 to t = 3.5, and the model is tested for 400th
snapshot at t = 4.0

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM CNN

Fig. 14 Probability density function for SGS stresses distribution with CNN mapping. The CNN is trained using
M2: {ū, v̄, ūx , ūx , ū y, v̄y} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0 to t = 3.5,
and the model is tested for 400th snapshot at t = 4.0

for CNN is around 0.2 times the time required by the DSM. Therefore, CNN can provide a more accurate
prediction for LES at a less computational cost. Despite these advantages, the application of CNN for the
unstructured grid is an open question. If the computational domain has a simple geometry and the data are
available in the form of snapshots as in the case of box turbulence, wall-bounded flows, it is advantageous to
use CNN. There are several studies that introduce novel CNN architectures for point cloud data (as in the case
of the unstructured grid) [93–96]. With these novel CNN architectures, the improved predictive capability of
CNN can be exploited for turbulence closure modeling.

Figure 17 displays the two-dimensional contour plot of true SGS stress τ12 and SGS stress predicted by
the DSM, neighboring stencil mapping ANN, and CNN mapping. The DSM model captures the bulk eddy
viscosity, but not the actual phase. This is the reason behind low value of cross-correlation between true SGS
stresses and SGS stresses predicted by the DSM. Data-driven models on the other hand are able to capture
both magnitude and phase correctly in comparison with true SGS stress τ12.

To summarize our analysis, we show the cross-correlation between true and predicted SGS stresses in
Fig. 18 for all three data-driven closure models with a different number of snapshots. We have summarized
the results only for model M3, which includes coarse-grid velocities, coarse-grid velocity gradients, and the

S. Pawar et al.

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102
P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM CNN

Fig. 15 Probability density function for SGS stresses distribution with CNN mapping. The CNN is trained using
M3: {ū, v̄, ūx , ūx , ū y, v̄y, ūxx , ū yy, v̄xx , v̄yy} → {τ̃11, τ̃12, τ̃22}. The training set consists of 350 time snapshots from time t = 0.0
to t = 3.5, and the model is tested for 400th snapshot at t = 4.0

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

True CNN (350) CNN (70) CNN (24)

Fig. 16 Probability density function for SGS stresses distribution with CNN mapping. The CNN is trained using
M3: {ū, v̄, ūx , ūx , ū y, v̄y, ūxx , ū yy, v̄xx , v̄yy} → {τ̃11, τ̃12, τ̃22}. The model is trained using different number of snapshots
between t = 0.0 and t = 3.5, and the model is tested for 400th snapshot at t = 4.0

Laplacian of coarse-grid velocities. The model M3 was found to give a better prediction for all data-driven
models without incurring a high computational cost. It can be clearly seen that the CNN is more sensitive to
the amount of training data than ANN in terms of its ability to predict SGS stresses. In terms of computational
performance, the CNN mapping has the fastest performance (both training and testing/deployment) and has
a potential to give accurate prediction with less computational price compared to the dynamic Smagorinsky
model.

5 Intelligent eddy viscosity modeling

The data-driven frameworks presented in Sect. 4 learn SGS stress directly and hence attempt to improve
its prediction by trying to approximate true SGS stresses. Despite the improved prediction, neural networks
are black-box models and these models cannot be interpreted or explained. In this section, we demonstrate
intelligent eddy viscosity model as an alternative to the dynamic Smagorinsky model. Our aim here is to
illustrate that these black-box data-driven tools can be also tailored to accelerate such phenomenological eddy
viscosity models.

In two-dimensional simulations, the dynamic procedure in the computation of Smagorinsky coefficient
in DSM involves the application of low-pass filter eight times at each query. Instead of using these filtering
operations, the neural networks can be trained to learn the dynamic eddy viscosity and the trained model
can be deployed cost-effectively. One more advantage of this approach is that the numerical stability during
the a posteriori deployment will be enforced. Maulik et al. [39] noted that the clipping of vorticity source
term is required to attain the numerical stability during the deployment of data-driven SGS model. The similar
observationwas also found byBeck et al. [54] for the decaying homogeneous isotropic turbulence problem. The
data-driven SGS closuremodels can predict negative source term at some spatial locations and therefore violate
the Boussinesq hypothesis for functional SGS modeling. The intelligent model to learn eddy viscosity can be

A priori analysis on deep learning of subgrid-scale parameterizations

0 2 4 6
x

0

2

4

6

y
τTrue
12

0 2 4 6
x

0

2

4

6

y

τDSM
12

0 2 4 6
x

0

2

4

6

y

τANN
12

0 2 4 6
x

0

2

4

6

y
τCNN
12

−0.032

−0.016

0.000

0.016

0.032

Fig. 17 Two-dimensional contour plot of the SGS stress τ12 at time t = 4.0. τANN12 is the SGS stress computed using neighboring
stencil mapping ANN with model M3. τCNN12 is the SGS stress computed using CNN mapping with model M3

built by enforcing the constraint such that eddy viscosity predicted by neural network remains nonnegative.
This eddy viscosity is then used for computing SGS stresses using Eq. 7. We only use coarse-grid velocity and
their gradient in the dynamic procedure to compute the Smagorinsky coefficient. Hence, we can include them
as input features to learn eddy viscosity. The intelligent eddy viscosity model is given as

M4 : {ū, v̄, ūx , ū y, v̄x , v̄y} ∈ R

6 → {νe} ∈ R

1, (31)

where the eddy viscosity νe is given as

νe = (CsΔ)2|S̄|, (32)

where (CsΔ)2 is computed from Eq. 19, and |S̄| is given by Eq. 8. The similar framework was studied by
Pal [56], and they showed that the data-driven model gives two to eight times computational performance gain
against the dynamic Smagorinsky model for wall-bounded turbulent flows.

The main advantage of this modeling approach is the numerical stability during a posteriori deployment
and computational speedup. To avoid repetition, we compare the performance of intelligent eddy viscosity
model with CNN mapping only. Table 4 lists the performance of intelligent eddy viscosity model trained with
a different number of hyperparameters. The task of learning dynamic eddy viscosity is easier as compared
to learning true SGS stresses, and hence, we get cross-correlation up to 0.98 with just one hidden layer and
16 kernels. The intelligent eddy viscosity model is around eight times faster than the DSM. If we use deep

S. Pawar et al.

Point-to-point mapping Neighboring stencil mapping CNN mapping
0.00

0.25

0.50

0.75

cc

τ11

Point-to-point mapping Neighboring stencil mapping CNN mapping
0.00

0.25

0.50

0.75

cc

τ12

Point-to-point mapping Neighboring stencil mapping CNN mapping
0.00

0.25

0.50

0.75

cc

τ22

Ns = 24 Ns = 70 Ns = 350

Fig. 18 Summary of cross-correlation between true and predicted SGS stresses for different data-driven closure models trained
using different number of snapshots

Table 4 Cross-correlation between DSM eddy viscosity and intelligent eddy viscosity predicted by data-driven models and CPU
time for different models with CNN mapping

Model Hyperparameters cc(νe) Test time

DSM – – 0.0095
CNN-1 [16] 0.988 0.0012
CNN-2 [16, 8, 16] 0.994 0.0015
CNN-3 [16, 8, 8, 8, 8, 16] 0.992 0.0024

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM CNN-1 CNN-2 CNN-3

Fig. 19 Probability density function for true SGS stresses distribution and stresses computed at t = 4.0 with DSM and intelligent
eddy viscosity model. The CNN is trained using M4: {ū, v̄, ūx , ūx , ū y, v̄y} → {νe}. The model is trained using 350 snapshots
between t = 0.0 and t = 3.5, and the prediction is shown for time t = 4.0

network similar to the data-driven SGS model, we still get a computational speedup of four times. Figure 19
shows the comparison of true SGS stresses, SGS stresses predicted by DSM, and SGS stresses computed from
different intelligent eddy viscosity models (different CNN architectures). The SGS stresses predicted by the
CNN are very close to the stresses computed from the DSM, and hence we can get similar performance similar
to the DSM at much less computational cost.

A priori analysis on deep learning of subgrid-scale parameterizations

6 Conclusion

In the present study, we investigated different data-driven turbulence closure frameworks to learn SGS stresses
using coarse-grained field variables. The blending of data-driven turbulence closure models within physics-
based LES framework presents the hybrid modeling approach that has the potential to give an accurate pre-
diction of fluid flows at a less computational cost. The traditional Smagorinsky model is based on empirical
formulas and phenomenological relationships and can either produce insufficient or excessive dissipation. On
the other hand, the optimal map between coarse-grid field variables and SGS stresses learned by data-driven
framework provides improved prediction compared to the dynamic Smagorinsky model. The importance of
the selection of input features in the prediction of SGS stresses is illustrated for different data-driven closure
models using two-dimensional Kraichnan turbulence as the prototype example. The quantitative analysis using
cross-correlation indicates that the prediction of SGS stresses improves when coarse-grid velocities, velocity
gradients, and their Laplacian are included in input features. The analysis with localized mapping showed that
the improvement in the prediction of SGS stresses is achieved when information from neighboring points is
also includedwithout any significant increase in the training and deployment time. The CNNmapping provides
the most accurate prediction close to true SGS stresses with less computational overhead for training because
of their invariance and weight sharing property.

The analysis of deployment time for different frameworks points out that data-driven closure models
can give accurate SGS stresses prediction with the same or less computational overhead as the dynamic
Smagorinsky model. The localized point-to-point mapping with ANN is particularly attractive for practical
engineering applications due to its ability to handle unstructured mesh. The CNN mapping, on the other
hand, seems more suitable for applications where a large amount of training data is available in the form
of snapshots. While intelligent SGS modeling frameworks can model true SGS stresses accurately, they are
prone to numerically unstable prediction in the a posteriori deployment as shown in recent studies [39,54].
To exploit the potential of these black-box models in safety critical applications, we further investigate their
robustness in predicting eddy viscosity coefficient. Although limiting in their predictive accuracy by utilizing
an eddy viscosity model, we illustrate that the intelligent eddy viscosity approach gives four to eight times
computational speedup with the same accuracy as the DSM.

We highlight that the data-driven techniques are in their infancy. Once the trained model is deployed
in a CFD code, a posteriori analysis of data-driven closure models might give unexpected predictions (i.e.,
numerically or physically inconsistent). To be able to use the neural network-based model in safety-critical
applications, we need either of the two: interpret the model and figure out when it can fail, or to use neural
networks in a way that we can detect when it fails and produces nonphysical results. Interpreting a deep
neural network with millions of parameters is almost impossible. In our future work, we will focus on the
second approach with internal sanity checking mechanism where a black-box model helps better modeling
of conservation laws, and conservation mechanism puts a sanity check on black-box model. Furthermore, the
neural network architectures employed in this work are fairly simple plain vanilla versionswithout any complex
structure. The predictive performance of data-driven closure models can be further improved by constructing
more sophisticated architecture designs like TBNN [37] and generative adversarial networks [97]. In the
future, we would also like to extend these approaches for more complex test cases such as three-dimensional
Kolmogorov turbulence and geophysical flows. Some of the frameworks investigated in this study, especially
with ANN, can be readily extended to 3D turbulent flows. For the CNN framework, the convolutional filter
is very important for an accurate prediction of turbulent flows. The discretization for 3D turbulent flows is
usually nonuniform. For example, in the case of the channel flow, the mesh is clustered near the wall than away
from the wall. For such flows, we might design special convolutional filters in different regions of the flow.

Acknowledgements This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under Award No. DE-SC0019290. Omer San gratefully acknowledges their support.

Appendix A: Derivation of the Smagorinsky model in 2D turbulence

From Eq. 5, the subgrid-scale stresses in 2D field can be written as

τi j = uiu j − ūi ū j , (33)

S. Pawar et al.

= 1

2
τkkδi j︸ ︷︷ ︸

kSGSδi j

+
(

τi j − 1

2
τkkδi j︸ ︷︷ ︸

τ di j

)
. (34)

The SGS stresses can be written as

τ = kSGS I + τ d , (35)

where kSGS = 1
2τkk is called subgrid-scale kinetic energy (i.e., using the conventional summation notation

with repeating indices, for example, τkk = τ11 + τ22, in 2D). In Smagorinsky model, we model the deviatoric
(traceless) part of SGS stresses as

τ di j = −2νe S̄
d
i j , (36)

where νe is the SGS eddy viscosity, and S̄i j is called resolved strain rate tensor given by

S̄i j = 1

2

(
∂ ūi
∂x j

+ ∂ ū j

∂xi

)
, (37)

where we can write explicitly as follows

S̄ =

⎡
⎢⎢⎣

∂ ū
∂x

1
2

(
∂ ū
∂y + ∂v̄

∂x

)

1
2

(
∂v̄
∂x + ∂ ū

∂y

)
∂v̄
∂y

⎤
⎥⎥⎦ . (38)

The trace of the S̄ is zero owing to the continuity equation for incompressible flows. Therefore, S̄di j = S̄i j and
the Smagorinsky model becomes

τ di j = −2νe S̄i j . (39)

The eddy viscosity approximation computes νe using the following relation

νe = CkΔ
√
kSGS, (40)

where the proportionality constant is often set to Ck = 0.094, and Δ is the length scale (usually grid size).
The SGS kinetic energy kSGS is computed with the local equilibrium assumption of the balance between
subgrid-scale energy production and dissipation

S̄ : τ + Cε

k1.5SGS

Δ
= 0, (41)

where the first term in the above equation is dissipation flux, second term is production flux, and the production
constant is often set to Cε = 1.048. The double inner product operation : is given by

S̄ : τ = S̄i jτi j = S̄11τ11 + S̄12τ12 + S̄21τ21 + S̄22τ22. (42)

Substituting Eqs. 35 and 39 into Eq. 41, we get

S̄ : (kSGS I − 2CkΔ
√
kSGS S̄) + Cε

k1.5SGS

Δ
= 0, (43)

√
kSGS

(
Cε

Δ
kSGS + √

kSGS S̄ : I︸︷︷︸
S̄i j δi j=0

−2CkΔS̄ : S̄
)

= 0, (44)

Cε

Δ
kSGS − 2CkΔS̄ : S̄ = 0, (45)

A priori analysis on deep learning of subgrid-scale parameterizations

From the above equations, subgrid-scale kinetic energy can be written as

kSGS = Ck

Cε

Δ2(2S̄ : S̄), (46)

kSGS = Ck

Cε

Δ2|S̄|2, (47)

where |S̄| =
√
2S̄i j S̄i j . Furthermore, substituting Eq. 40 in the above equation, we get

νe = CkΔ
2

√
Ck

Cε

|S̄|. (48)

We can define a new constant coefficient as

C2
s = Ck

√
Ck

Cε

. (49)

where Cs = 0.1678 is called the Smagorinsky coefficient. Finally, we get following expression for SGS eddy
viscosity

νe = C2
s Δ

2|S̄|, (50)

and the Smagorinsky model, given by Eq. 36, reads as

τ di j = −2C2
s Δ

2|S̄|S̄i j . (51)

Appendix B: Hyperparameters optimization

In appendix, we outline the procedure we followed for selection of hyperparameters for ANN with point-to-
point mapping and neighboring stencil mapping. For ANN, there are many hyperparameters such as number
of neurons, number of hidden layers, loss function, optimization algorithm, activation function, and batch size,
etc. If we use regularization, dropout, or weight decay to avoid overfitting, the design space of hyperparameters
increases further.
We focus on three main hyperparameters of ANN: number of neurons, number of hidden layers, and learning

rate of optimization algorithm. The training data are scaled between [−1, 1] using the minimum andmaximum
value in the training dataset. We use ReLU activation function given by ζ(χ) = max(0, χ), where ζ is the
activation function, and χ is the input to the node. We use Adam optimization algorithm [71], and the batch
size is kept constant at 256. Adam optimization algorithm has three hyperparameters: learning rate α, first
moment decay rate β1, and second moment decay rate β2. We test our ANN for two learning rates α = 0.001
and 0.0001. The other two hyperparameters in Adam optimization algorithm are β1 = 0.9 and β2 = 0.999.We
employmean-squared error as the loss functions, since it is a regression problem.We test both ANNwith point-
to-point mapping and neighboring stencil mapping for four different number of hidden layers L = 2, 3, 5, 7.
The ANN with point-to-point mapping is tested for four different number of neurons N = 20, 30, 40, 50, and
the local stencil mapping is tested for N = 40, 60, 80, 100. The number of neurons is higher in case of local
stencil mapping because there are more features compared to point-to-point mapping.
The optimal ANN architecture is selected using multi-dimensional gridsearch algorithm coupled with k-fold

cross-validation. Cross-validation is a procedure used to determine the performance of the neural network
on unseen data. The procedure consists of dividing the training data into k groups, training the ANN by
excluding each group and evaluating the model’s performance on that group. Therefore, if we use fivefold
cross-validation, then the model is trained five times and the performance index is computed for five groups.
Once the performance for each group is available, the mean of the performance index is utilized to select
optimal hyperparameters. We use 500 epochs for determining the optimal hyperparameters. A good learning
is achieved when both training loss and validation loss reduce till the learning rate is minimal. We apply

S. Pawar et al.

1 2 3 4 5 6 7 8
Number of hidden layers

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85
r 2

α = 0.001

1 2 3 4 5 6 7 8
Number of hidden layers

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

r 2

α = 0.0001

N = 20 N = 30 N = 40 N = 50

Fig. 20 Hyperparameters search using the gridsearch algorithm combined with fivefold cross-validation for the neural network
using point-to-point mapping with M3

1 2 3 4 5 6 7 8
Number of hidden layers

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

r 2

α = 0.001

1 2 3 4 5 6 7 8
Number of hidden layers

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85
r 2

α = 0.0001

N = 20 N = 30 N = 40 N = 50

Fig. 21 Hyperparameters search using the gridsearch algorithm combined with fivefold cross-validation for the neural network
using neighboring stencil mapping with M3

coefficient of determination r2 as the performance index to decide optimal hyperparameters. The calculation
of coefficient of determination is done using the following formula

r2 = 1 −
∑

i (yi − ỹi)2∑
i (yi − ȳ)2

, (52)

where yi is the true label, ỹ is the predicated label, and ȳ is the mean of true labels.
Figure 20 displays the performance index for ANN with point-to-point mapping and M3 model for all

hyperparameters tested using gridsearch algorithm. It can be observed that the performance of the network
does not change significantly with hyperparameters and the difference in performance is very small. The
optimal hyperparameters obtained for point-to-point mapping ANN are L = 2, N = 40, and α = 0.0001. We
use the same hyperparameters for other two models M1 and M2 for point-to-point mapping ANN. We see the
similar behavior in case of neighboring stencil mapping ANN and model M3 as shown in Fig. 21. The optimal
hyperparameters for neighboring stencil mapping ANN are L = 2, N = 40, and α = 0.001.
As discussed in Sect. 4.1, we get poor prediction between true and predicted stresses for point-to-point

mapping with model M1. Figure 22 shows the PDF of true and predicted stresses computed with different
activation functions. It can be observed that the predicted stresses are almost the same for all activation
functions. Therefore, we can conclude that we need additional input features such as velocity gradients to
improve the prediction with point-to-point mapping.

A priori analysis on deep learning of subgrid-scale parameterizations

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ11

10−1

100

101

102
P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ12

10−1

100

101

102

P
D
F

−4σ−3σ−2σ−1σ 0σ 1σ 2σ 3σ 4σ
τ22

10−1

100

101

102

True DSM ANN (ReLU) ANN (Tanh) ANN (Sigmoid)

Fig. 22 Probability density function for SGS stress distribution with point-to-point mapping. The ANN is trained using
M1: {ū, v̄} → {τ̃11, τ̃12, τ̃22} with different activation functions. The training set consists of 70 time snapshots from time t = 0.0
to t = 3.5, and the model is tested for 400th snapshot at t = 4.0

3 4 5 6 7 8 9 10 11
Number of hidden layers

0.625

0.650

0.675

0.700

0.725

0.750

0.775

r 2

α = 0.001

3 4 5 6 7 8 9 10 11
Number of hidden layers

0.3

0.4

0.5

0.6

0.7

r 2

α = 0.0001

N = 8 N = 16 N = 24 N = 32

Fig. 23 Hyperparameters search using the gridsearch algorithm combined with fivefold cross-validation for CNN mapping with
model M3

The CNN architecture has similar hyperparameters as the ANN. Additionally, we need to select the kernel
shape and strides for CNNs. Stride is the amount by which the kernel should shift as it convolves around the
volume. We use the stride=1 in both x and y directions. We use 3× 3-shaped kernel in our CNN architecture.
We check the performance of CNN architecture for different number of hidden layers L = 2, 4, 6, 8, different
number of filters N = 8, 16, 24, 32, and two learning rates. Figure 23 displays the performance index of CNN
for different hyperparameters. The performance of CNN is more sensitive to the learning rate, and we observe
stable performance for the learning rate α = 0.001. The performance is almost similar for L = 6, 8, 10
with different number of kernels. We can select L = 6 and N = 16, which has performance index of 0.76.
Additionally, we test the CNN architecture with L = 6 and [16, 8, 8, 8, 8, 16] distribution for the number
of kernels along hidden layers and we observed the performance index of 0.75 at less computational cost.
Therefore, we apply L = 6, N = [16, 8, 8, 8, 8, 16], and α = 0.001 as our hyperparameters for the CNN
architecture.

Appendix C: CPU time measurements

In this study, the pseudo-spectral solver used for DNS is written in Python programming language. The code for
coarsening of variables from fine to coarse grid, dynamic Smagorinsky model code is all written in Python.We
use vectorization to get faster computational performance. The machine learning library Keras is also available
in Python and is used for developing all data-driven closure models. Therefore, the CPU time reported in our
analysis is for codes, which are all developed on the same platform. We would like to highlight that when the
trained model is deployed, it makes the function for first time and hence it takes slightly more time. Once the

S. Pawar et al.

function is created, the CPU time for deployment is less. Therefore, in all our tables, we report the CPU time
for running the predict function second time since initializing CUDA kernels might yield a startup overhead
as shown in Listing 1, where t1 here has some idle time due to initializing kernels. In our study, we report t2,
and we further verified that t3 − t2= t2, which illustrate that the reported CPU times are consistent.

1 test_time_init = tm.time()
2 y_test = model.predict(ftest)
3 t1 = tm.time() - test_time_init
4

5 test_time_init = tm.time()
6 y_test = model.predict(ftest)
7 t2 = tm.time() - test_time_init
8

9 test_time_init = tm.time()
10 y_test = model.predict(ftest)
11 y_test = model.predict(ftest)
12 t3 = tm.time() - test_time_init

Listing 1 Code sample to check the CPU time for data-driven models.

Appendix D: ANN and CNN architectures

We use open-source Keras library to build our neural networks. It uses TensorFlow at the backend. Keras is
widely used for fast prototyping, advanced research, and production due to its simplicity and faster learning
rate. Keras library provides different options for optimizers, neural network architectures, activation functions,
regularization, dropout, etc. Any simple neural network architecture can be coded with few lines of code. The
sample code for ANN and CNN used in this work is listed in Listings 2 and 3.

1 model = Sequential ()
2

3 input_layer = Input(shape =(nf ,))
4

5 x = Dense (40, activation=’relu’, use_bias=True)(input_layer)
6 x = Dense (40, activation=’relu’, use_bias=True)(x)
7

8 output_layer = Dense(nl, activation=’linear ’, use_bias=True)(x)
9

10 model = Model(input_layer , output_layer)
11

12 adam = optimizers.Adam(lr=lr, beta_1 =0.9, beta_2 =0.999 , epsilon=None ,
decay =0.0, amsgrad=False)

13

14 model.compile(loss=’mse’, optimizer=adam , metrics =[cod])

Listing 2 Sample code for the ANN used in this study.

1 inputf = Input(shape =(nx,ny,nci))
2

3 x = Conv2D (16, (3, 3), activation=’relu’, padding=’same’)(inputf)
4 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
5 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
6 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
7 x = Conv2D(8, (3, 3), activation=’relu’, padding=’same’)(x)
8 x = Conv2D (16, (3, 3), activation=’relu’, padding=’same’)(x)
9

10 output = Conv2D(nco , (3, 3), activation=’linear ’, padding=’same’)(x)
11

12 model = Model(inputf , output)
13

14 adam = optimizers.Adam(lr=lr, beta_1 =0.9, beta_2 =0.999 , epsilon=None ,
decay =0.0, amsgrad=False)

15

16 model.compile(loss=’mse’, optimizer=adam , metrics =[cod])

Listing 3 Sample code for the CNN used in this study.

A priori analysis on deep learning of subgrid-scale parameterizations

References

1. Durbin, P.A.: Near-wall turbulence closuremodelingwithout “damping functions”. Theor. Comput. Fluid Dyn. 3(1), 1 (1991)
2. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech.

68(3), 537 (1975)
3. Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32(1),

1 (2000)
4. Mellor, G.L., Yamada, T.: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20(4),

851 (1982)
5. Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. In: 13th Fluid and Plasma

Dynamics Conference, p. 1357 (1980)
6. Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flows. Annu. Rev. Fluid Mech. 16(1), 99 (1984)
7. Erlebacher, G., Hussaini, M.Y., Speziale, C.G., Zang, T.A.: Toward the large-eddy simulation of compressible turbulent

flows. J. Fluid Mech. 238, 155 (1992)
8. Frisch, U., Kolmogorov, A.N.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)
9. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev.

91(3), 99 (1963)
10. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech.

41(2), 453 (1970)
11. Mcmillan, O., Ferziger, J., Rogallo, R.: Tests of subgrid-scale models in strained turbulence. In: 13th Fluid and Plasma

Dynamics Conference, p. 1339 (1980)
12. Mason, P., Callen, N.: On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel

flow. J. Fluid Mech. 162, 439 (1986)
13. Piomelli, U., Moin, P., Ferziger, J.H.: Model consistency in large eddy simulation of turbulent channel flows. Phys. Fluids

31(7), 1884 (1988)
14. Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7),

1760 (1991)
15. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4(3), 633 (1992)
16. Ghosal, S., Lund, T.S., Moin, P., Akselvoll, K.: A dynamic localization model for large-eddy simulation of turbulent flows.

J. Fluid Mech. 286, 229 (1995)
17. Meneveau, C., Lund, T.S., Cabot, W.H.: A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353

(1996)
18. Park, N., Mahesh, K.: Reduction of the Germano-identity error in the dynamic Smagorinsky model. Phys. Fluids 21(6),

065106 (2009)
19. Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. (2019).

https://doi.org/10.1146/annurev-fluid-010719-060214
20. Brenner, M., Eldredge, J., Freund, J.: Perspective on machine learning for advancing fluid mechanics. Phys. Rev. Fluids

4(10), 100501 (2019)
21. Kutz, J.N.: Deep learning in fluid dynamics. J. Fluid Mech. 814, 1 (2017)
22. Milano, Michele, Koumoutsakos, Petros: Neural network modeling for near wall turbulent flow. J. Comput. Phys. 182(1),

1 (2002)
23. Erichson, N.B., Mathelin, L., Yao, Z., Brunton, S.L., Mahoney, M.W., Kutz, J.N.: Shallow learning for fluid flow

reconstruction with limited sensors and limited data. ArXiv preprint arXiv:1902.07358 (2019)
24. Fukami, K., Fukagata, K., Taira, K.: Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid

Mech. 870, 106 (2019)
25. Lee, K., Carlberg, K.: Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders.

ArXiv preprint arXiv:1812.08373 (2018)
26. Murata, T., Fukami, K., Fukagata, K.: Nonlinear mode decomposition with convolutional neural networks for fluid dynamics.

J. Fluid Mech. 882, A13 (2020)
27. Rudy, S.H., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Data-driven discovery of partial differential equations. Sci. Adv. 3(4),

e1602614 (2017)
28. Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-net: learning PDEs from data. ArXiv preprint arXiv:1710.09668 (2017)
29. Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J.

Comput. Phys. 357, 125 (2018)
30. Pathak, J., Hunt, B., Girvan, M., Lu, Z., Ott, E.: Model-free prediction of large spatiotemporally chaotic systems from data:

a reservoir computing approach. Phys. Rev. Lett. 120(2), 024102 (2018)
31. Vlachas, P.R., Byeon, W., Wan, Z.Y., Sapsis, T.P., Koumoutsakos, P.: Data-driven forecasting of high-dimensional chaotic

systems with long short-term memory networks. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2213), 20170844 (2018)
32. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical gaussian processes for time-dependent and nonlinear partial

differential equations. SIAM J. Sci. Comput. 40(1), A172 (2018)
33. Pawar, S., Rahman, S.M., Vaddireddy, H., San, O., Rasheed, A., Vedula, P.: A deep learning enabler for nonintrusive reduced

order modeling of fluid flows. Phys. Fluids 31(8), 085101 (2019)
34. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving

forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686 (2019)
35. Erichson, N.B.,Muehlebach,M.,Mahoney,M.W.: Physics-informed autoencoders for Lyapunov-stable fluid flow prediction.

ArXiv preprint arXiv:1905.10866 (2019)
36. Magiera, J., Ray, D., Hesthaven, J.S., Rohde, C.: Constraint-aware neural networks for Riemann problems. ArXiv preprint

arXiv:1904.12794 (2019)

https://doi.org/10.1146/annurev-fluid-010719-060214
http://arxiv.org/abs/1902.07358
http://arxiv.org/abs/1812.08373
http://arxiv.org/abs/1710.09668
http://arxiv.org/abs/1905.10866
http://arxiv.org/abs/1904.12794

S. Pawar et al.

37. Ling, J., Kurzawski, A., Templeton, J.: Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance. J. Fluid Mech. 807, 155 (2016)

38. Wu, J.L., Xiao, H., Paterson, E.: Physics-informed machine learning approach for augmenting turbulence models: a
comprehensive framework. Phys. Rev. Fluids 3(7), 074602 (2018)

39. Maulik, R., San, O., Rasheed, A., Vedula, P.: Subgrid modelling for two-dimensional turbulence using neural networks. J.
Fluid Mech. 858, 122 (2019)

40. Mohebujjaman, M., Rebholz, L.G., Iliescu, T.: Physically constrained data-driven correction for reduced-order modeling of
fluid flows. Int. J. Numer. Methods Fluids 89(3), 103 (2019)

41. Duraisamy, K., Iaccarino, G., Xiao, H.: Turbulence modeling in the age of data. Annu. Rev. Fluid Mech. 51, 357 (2019)
42. Lapeyre, C.J., Misdariis, A., Cazard, N., Veynante, D., Poinsot, T.: Training convolutional neural networks to estimate

turbulent sub-grid scale reaction rates. Combust. Flame 203, 255 (2019)
43. King, R., Hennigh, O., Mohan, A., Chertkov, M.: From deep to physics-informed learning of turbulence: diagnostics. ArXiv

preprint arXiv:1810.07785 (2018)
44. Wang, Z., Luo, K., Li, D., Tan, J., Fan, J.: Investigations of data-driven closure for subgrid-scale stress in large-eddy

simulation. Phys. Fluids 30(12), 125101 (2018)
45. Taira, K.: Revealing essential dynamics from high-dimensional fluid flow data and operators. ArXiv preprint

arXiv:1903.01913 (2019)
46. Tracey, B., Duraisamy, K., Alonso, J.: Application of supervised learning to quantify uncertainties in turbulence and

combustion modeling. In: 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace
Exposition, p. 259 (2013)

47. Tracey, B.D., Duraisamy, K., Alonso, J.J.: A machine learning strategy to assist turbulence model development. In: 53rd
AIAA Aerospace Sciences Meeting, p. 1287 (2015)

48. Ling, J., Ruiz, A., Lacaze, G., Oefelein, J.: Uncertainty analysis and data-driven model advances for a jet-in-crossflow. J.
Turbomach. 139(2), 021008 (2017)

49. Sarghini, F., De Felice, G., Santini, S.: Neural networks based subgrid scale modeling in large eddy simulations. Comput.
Fluids 32(1), 97 (2003)

50. Pope, S.: A more general effective-viscosity hypothesis. J. Fluid Mech. 72(2), 331 (1975)
51. Gamahara,M.,Hattori, Y.: Searching for turbulencemodels by artificial neural network. Phys. Rev. Fluids2(5), 054604 (2017)
52. Wang, J.X., Wu, J.L., Xiao, H.: Physics-informed machine learning approach for reconstructing Reynolds stress modeling

discrepancies based on DNS data. Phys. Rev. Fluids 2(3), 034603 (2017)
53. Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.: Prediction of aerodynamic flow fields using convolutional

neural networks. Comput. Mech. 64, 525–545 (2019)
54. Beck, A., Flad, D., Munz, C.D.: Deep neural networks for data-driven LES closure models. J. Comput. Phys. 398, 108910

(2019)
55. Srinivasan, P., Guastoni, L., Azizpour, H., Schlatter, P., Vinuesa, R.: Predictions of turbulent shear flows using deep neural

networks. Phys. Rev. Fluids 4(5), 054603 (2019)
56. Pal, A.: Deep learning parameterization of subgrid scales in wall-bounded turbulent flows. ArXiv preprint arXiv:1905.12765

(2019)
57. Maulik, R., San, O.: A neural network approach for the blind deconvolution of turbulent flows. J. FluidMech. 831, 151 (2017)
58. Kraichnan, R.H.: The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5(4), 497 (1959)
59. Kraichnan, R.H., Montgomery, D.: Two-dimensional turbulence. Rep. Prog. Phys. 43(5), 547 (1980)
60. Leith, C.: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci. 28(2), 145 (1971)
61. Boffetta, G., Ecke, R.E.: Two-dimensional turbulence. Annu. Rev. Fluid Mech. 44, 427 (2012)
62. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10(7), 1417 (1967)
63. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12(12), II

(1969)
64. Leonard, A.: Advances in Geophysics, vol. 18, pp. 237–248. Elsevier, Amsterdam (1975)
65. Liu, S., Meneveau, C., Katz, J.: Experimental study of similarity subgrid-scale models of turbulence in the far-field of a jet.

Appl. Sci. Res. 54(3), 177 (1995)
66. San, O.: A dynamic eddy-viscosity closure model for large eddy simulations of two-dimensional decaying turbulence. Int.

J. Comput. Fluid Dyn. 28(6–10), 363 (2014)
67. Maulik, R., San, O.: A stable and scale-aware dynamic modeling framework for subgrid-scale parameterizations of

two-dimensional turbulence. Comput. Fluids 158, 11 (2017)
68. Hagan, M.T., Demuth, H.B., Beale, M.H., De Jesús, O.: Neural Network Design, vol. 20. PWS Pub., Boston (1996)
69. Glorot, X., Bengio, Y.: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp.

249–256 (2010)
70. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: International Conference on Machine Learning, pp. 1139–1147 (2013)
71. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv preprint arXiv:1412.6980 (2014)
72. Ruder, S.: An overview of gradient descent optimization algorithms. ArXiv preprint arXiv:1609.04747 (2016)
73. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: International Conference onMachine Learning, pp. 1058–1066 (2013)
74. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural

networks from overfitting. J. Mach. Learn. Res. 15(1), 1929 (2014)
75. Bartoldson, B.R., Morcos, A.S., Barbu, A., Erlebacher, G.: The generalization-stability tradeoff in neural network pruning.

ArXiv preprint arXiv:1906.03728 (2019)
76. Zhu, L., Zhang, W., Kou, J., Liu, Y.: Machine learning methods for turbulence modeling in subsonic flows around airfoils.

Phys. Fluids 31(1), 015105 (2019)
77. Xie, C., Wang, J., Li, H., Wan, M., Chen, S.: Artificial neural network mixed model for large eddy simulation of compressible

isotropic turbulence. Phys. Fluids 31(8), 085112 (2019)

http://arxiv.org/abs/1810.07785
http://arxiv.org/abs/1903.01913
http://arxiv.org/abs/1905.12765
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1906.03728

A priori analysis on deep learning of subgrid-scale parameterizations

78. Yang, X., Zafar, S., Wang, J.X., Xiao, H.: Predictive large-eddy-simulation wall modeling via physics-informed neural
networks. Phys. Rev. Fluids 4(3), 034602 (2019)

79. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Advances in
Neural Information Processing Systems, pp. 1097–1105 (2012)

80. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks.
Advances in Neural Information Processing Systems, pp. 91–99 (2015)

81. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

82. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: European Conference
on Computer Vision. Springer, pp. 391–407 (2016)

83. Hou, W., Darakananda, D., Eldredge, J.: Machine learning based detection of flow disturbances using surface pressure
measurements. In: AIAA Scitech 2019 Forum, p. 1148 (2019)

84. Nikolaou, Z.M., Chrysostomou, C., Vervisch, L., Cant, S.: Modelling turbulent premixed flames using convolutional neural
networks: application to sub-grid scale variance and filtered reaction rate. ArXiv preprint arXiv:1810.07944 (2018)

85. Nikolaou, Z., Chrysostomou, C., Vervisch, L., Cant, S.: Progress variable variance and filtered rate modelling using
convolutional neural networks and flamelet methods. Flow Turbul. Combust. 103, 1–17 (2019)

86. Tabeling, P.: Two-dimensional turbulence: a physicist approach. Phys. Rep. 362(1), 1 (2002)
87. Orlandi, P.: Fluid Flow Phenomena: A Numerical Toolkit, vol. 55. Springer, Berlin (2012)
88. San, O., Staples, A.E.: High-order methods for decaying two-dimensional homogeneous isotropic turbulence. Comput.

Fluids 63, 105 (2012)
89. Kleissl, J., Kumar, V.,Meneveau, C., Parlange,M.B.: Numerical study of dynamic Smagorinskymodels in large-eddy simula-

tion of the atmospheric boundary layer: validation in stable andunstable conditions.WaterResour.Res.42(6),W06D10 (2006)
90. Galperin, B., Orszag, S.A.: Large Eddy Simulation of Complex Engineering and Geophysical Flows. Cambridge University

Press, Cambridge (1993)
91. Khani, S., Waite, M.L.: Large eddy simulations of stratified turbulence: the dynamic smagorinsky model. J. Fluid Mech.

773, 327 (2015)
92. Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport.

Phys. Fluids A 3(11), 2746 (1991)
93. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: Spidercnn: deep learning on point sets with parameterized convolutional filters.

Proceedings of the European Conference on Computer Vision (ECCV), pp. 87–102 (2018)
94. Trask, N., Patel, R.G., Gross, B.J., Atzberger, P.J.: GMLS-Nets: a framework for learning from unstructured data. ArXiv

preprint arXiv:1909.05371 (2019)
95. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable

convolution for point clouds. ArXiv preprint arXiv:1904.08889 (2019)
96. Fey, M., Eric Lenssen, J.,Weichert, F., Müller, H.: SplineCNN: fast geometric deep learning with continuous B-spline

kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 869–877 (2018)
97. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative

adversarial nets. Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affil-
iations.

http://arxiv.org/abs/1810.07944
http://arxiv.org/abs/1909.05371
http://arxiv.org/abs/1904.08889

	A priori analysis on deep learning of subgrid-scale parameterizations for Kraichnan turbulence
	Abstract
	1 Introduction
	2 Turbulence closure
	2.1 Dynamic Smagorinsky model

	3 Data-driven turbulence closure
	4 Intelligent SGS modeling
	4.1 Point-to-point mapping
	4.2 Neighboring stencil mapping
	4.3 CNN mapping

	5 Intelligent eddy viscosity modeling
	6 Conclusion
	Acknowledgements
	References

